【摘要】近幾年來,國內(nèi)外學(xué)者對(duì)大跨徑橋梁的靜風(fēng)穩(wěn)定性展開了廣泛的研究,相繼產(chǎn)生了一些分析方法。本文首先對(duì)現(xiàn)有的大跨徑橋梁靜風(fēng)穩(wěn)定性分析方法進(jìn)行了回顧與比較,并就其中的不足進(jìn)行簡要討論,作為改進(jìn)提出了一種新方法,采用這些方法對(duì)虎門大橋的靜風(fēng)穩(wěn)定性進(jìn)行了計(jì)算與比較。
關(guān)鍵詞 大跨徑橋梁 靜風(fēng)穩(wěn)定性 非線性分析
一、引言
近幾年來,我國先后建成了主跨888m的虎門懸索橋和主跨1385m的江陰長江懸索橋以及主跨423m的南浦斜拉橋和602m的楊浦斜拉橋。交通部規(guī)劃將興建的沿海高等級(jí)公路干線上,還有五座大型跨海工程,它們自北向南依次跨越渤海海峽、長江口、杭州灣、珠江口伶仃洋以及瓊州海峽,這些跨海工程都需要建造大跨徑橋梁,為大跨徑橋梁提出了更高的要求。
但是,隨著橋梁跨徑的不斷增大,勢(shì)必會(huì)帶來一些新的問題。風(fēng)荷載作用下大跨徑橋梁的靜力穩(wěn)定問題就是其例。早在1967年日本東京大學(xué)Hirai教授就在懸索橋的全橋模型風(fēng)洞試驗(yàn)中觀察到了靜力扭轉(zhuǎn)發(fā)散的現(xiàn)象,同濟(jì)大學(xué)風(fēng)洞實(shí)驗(yàn)室在對(duì)汕頭海灣二橋的風(fēng)洞試驗(yàn)中,也發(fā)現(xiàn)了斜拉橋由靜風(fēng)引起的彎扭失穩(wěn)現(xiàn)象[1,2]。最近,Boonyapinyo,
Miyata、謝旭等學(xué)者通過計(jì)算也表明了這種現(xiàn)象出現(xiàn)的可能性[1,3]。圖1為大跨徑橋梁結(jié)構(gòu)靜風(fēng)失穩(wěn)過程示意圖。從圖中我們可以看出接線性方法進(jìn)行大跨徑橋梁的靜風(fēng)臨界風(fēng)速的求解一般會(huì)過高地估計(jì)了橋梁的抗風(fēng)能力,是偏于不安全的[4]。而采用僅考慮結(jié)構(gòu)幾何非線性分析方法計(jì)算出的先穩(wěn)風(fēng)速也會(huì)偏高,只有全面考慮結(jié)構(gòu)幾何非線性與靜風(fēng)荷載非線性的分析方法,才能比較真實(shí)地反映橋梁結(jié)構(gòu)失穩(wěn)的全過程。因此,有必要對(duì)大跨徑橋梁的非線性靜風(fēng)穩(wěn)定性的分析方法進(jìn)行全面的研究。
本文首先回顧和比較了目前幾種主要的靜風(fēng)穩(wěn)定性分析方法,針對(duì)這幾種方法的不足,提出了一種新的求解大跨徑橋梁靜風(fēng)穩(wěn)定性的方法--增量與內(nèi)外兩重迭代法,最后,通過一座實(shí)橋算例分析對(duì)這些方法進(jìn)行了比較分析,得出了一些結(jié)論。
二、現(xiàn)有靜風(fēng)穩(wěn)定性分析方法的回顧與比較
1.靜風(fēng)穩(wěn)定性分析方法的回顧
早期的靜風(fēng)穩(wěn)定性分析方法主要是線性方法,該方法根據(jù)結(jié)構(gòu)失穩(wěn)方式不同又可分為側(cè)傾失穩(wěn)和扭轉(zhuǎn)發(fā)散兩種[5]。下面以單跨懸索橋?yàn)槔謩e給出這兩種失穩(wěn)模態(tài)的計(jì)算公式。
(1)側(cè)傾失穩(wěn)臨界風(fēng)速計(jì)算
Vlb=KlbftB( 1)
式中
其中,Cd為加勁梁阻力系數(shù);Cl為加勁梁升力系數(shù)的斜率;ε為扭彎頻率比;Bc為主纜間距;h為加勁梁梁高。
(2)扭轉(zhuǎn)發(fā)散臨界風(fēng)速計(jì)算
vtd=KtdftB
式中
其中, m為單位橋長質(zhì)量(kg/m);此為單位橋長質(zhì)量慣矩 (kg·平方米/m); CMO為在攻角α=0度時(shí)升力矩系數(shù)CM的斜率,由風(fēng)洞試驗(yàn)測(cè)得;ft一般取一階對(duì)稱扭轉(zhuǎn)頻率(Hz)。
由于以上兩種公式均未考慮結(jié)構(gòu)非線性和靜風(fēng)荷載非線性因素的影響,因此計(jì)算出的靜風(fēng)臨界風(fēng)速一般會(huì)明顯偏高,對(duì)結(jié)構(gòu)而言是偏于不安全的。
文獻(xiàn)[ 6」提出一種用于分析大跨徑懸索橋靜風(fēng)穩(wěn)定性的實(shí)用方法--三角級(jí)數(shù)法,該方法綜合考慮了結(jié)構(gòu)幾何非線性和靜風(fēng)荷載升力和升力矩共同作用的非線性影響。該方法是由計(jì)算某一風(fēng)速下結(jié)構(gòu)的靜風(fēng)響應(yīng)和結(jié)構(gòu)臨界風(fēng)速的計(jì)算兩部分組成。其中在計(jì)算結(jié)構(gòu)靜風(fēng)響應(yīng)時(shí),將升力和升力矩曲線按分段直線擬會(huì),將升力、升力矩、豎向位移和結(jié)構(gòu)扭轉(zhuǎn)角用一組三角級(jí)數(shù)表示,并分別代入到懸索橋豎向和扭轉(zhuǎn)平衡微分方程,聯(lián)立確定各級(jí)數(shù)項(xiàng)的待定系數(shù),由于方程是非線性的,所以此項(xiàng)計(jì)算必須通過迭代方法完成。計(jì)算扭轉(zhuǎn)發(fā)散臨界風(fēng)速時(shí),在初始攻角下,先假定一初始風(fēng)速V0。,再通過靜風(fēng)響應(yīng)計(jì)算得到一組相應(yīng)的主纜索力和扭轉(zhuǎn)角,以此為新的初態(tài)增加一級(jí)風(fēng)速重新計(jì)算,當(dāng)前后兩次所計(jì)算的扭轉(zhuǎn)角的相對(duì)誤差超出允許值時(shí),認(rèn)為結(jié)構(gòu)出現(xiàn)扭轉(zhuǎn)發(fā)散,此時(shí)計(jì)算出的風(fēng)速即為臨界風(fēng)速。
文獻(xiàn)[4]采用增量法和迭代法相結(jié)合的方法進(jìn)行大跨徑橋梁第二類靜風(fēng)穩(wěn)定性有限元分析。其中增量法分為內(nèi)增量和外增量兩種,所謂內(nèi)增量,就是采用增量法進(jìn)行結(jié)構(gòu)幾何非線性的求解,外增量就是不斷施加風(fēng)速。而迭代法則是進(jìn)行某一風(fēng)速下結(jié)構(gòu)平衡狀態(tài)的求解。該方法雖然能較好地跟蹤結(jié)構(gòu)失穩(wěn)的全過程,但是由于它采用增量法進(jìn)行結(jié)構(gòu)幾何非線性的計(jì)算,因此會(huì)出現(xiàn)計(jì)算誤差累計(jì)的問題。
2.靜風(fēng)穩(wěn)定性分析方法的比較
以上分別介紹了三種不同的大跨徑橋梁靜風(fēng)穩(wěn)定性分析方法,為了更好地認(rèn)識(shí)和了解它們,本文對(duì)其作了比較分析,如表1所示。
三、對(duì)靜風(fēng)穩(wěn)定性分析方法的改進(jìn)
針對(duì)上述幾種靜風(fēng)穩(wěn)定性分析方法的不足,本文在綜合考慮靜風(fēng)荷載與結(jié)構(gòu)非線性影響的基礎(chǔ)上,采用增量與內(nèi)外兩重選代相結(jié)合的方法,實(shí)現(xiàn)了對(duì)大跨徑橋梁靜風(fēng)穩(wěn)定性的精確求解。
作用在主梁單位長度的靜風(fēng)荷載可分解為橫向風(fēng)荷載PH、豎向風(fēng)荷載PV和扭轉(zhuǎn)力矩M,具體表達(dá)式如下:
式中,CH(a),CV(a),CM(a)分別表示在有效攻角下主梁沿結(jié)構(gòu)坐標(biāo)軸各方向的阻力、升力、升力短系數(shù);所謂有效攻角,是指靜風(fēng)初始攻角與靜風(fēng)作用引起的主梁扭轉(zhuǎn)角之和。
按照桿系結(jié)構(gòu)空間穩(wěn)定理論,問題可歸結(jié)為求解如下形式的非線性方程:
式中,Ke和Kg分別為結(jié)構(gòu)的線彈性和幾何剛度矩陣;α為有效攻角。PH,PV,PM分別為體鈾下的風(fēng)阻力、升力和升力矩;f為函數(shù)因子;上標(biāo)G和W分別代表重力和風(fēng)力。
從(4)式可知,不僅結(jié)構(gòu)的剛度是結(jié)構(gòu)變形的函數(shù),而且右端項(xiàng)所表示的靜風(fēng)荷載也是結(jié)構(gòu)變形的函數(shù),為了求解該非線性方程,就必須采用迭代法。而為了跟蹤結(jié)構(gòu)變形的全過程,又必須采用增量法。為此,本文提出了采用增量與內(nèi)外兩重選代相結(jié)合的方法。增量法將風(fēng)速按一定比例增加。而其中的內(nèi)層選代主要是進(jìn)行結(jié)構(gòu)的非線性計(jì)算,而外層選代則是為了尋找結(jié)構(gòu)的某一風(fēng)速下的平衡位置。該方法的具體實(shí)施步驟如下:
(l)假定一初始風(fēng)速V0;
(2)計(jì)算在該風(fēng)速下結(jié)構(gòu)所受的靜風(fēng)荷載;
(3)采用 Newton- Rapson法求解(4)式,得到結(jié)構(gòu)位移U;
(4)從結(jié)構(gòu)位移U中提取單元扭轉(zhuǎn)角(為左右兩節(jié)點(diǎn)扭轉(zhuǎn)位移之和的平均值),重新計(jì)算結(jié)構(gòu)的靜風(fēng)荷載;
(5)檢查三分力系數(shù)的歐幾里得范數(shù)是否小于允許值;
(6)如果小于允許值,則按預(yù)定步長增加風(fēng)速,重復(fù)步驟(2)~(5);否則,重復(fù)步驟(3)~(5);
(7)如果在某一級(jí)風(fēng)速下,出現(xiàn)選代不收斂,則恢復(fù)到上一級(jí)風(fēng)速狀態(tài),縮短步長,重新計(jì)算,直至相鄰兩次風(fēng)速之差小于預(yù)定值為止。
四、算例分析與比較
分別采用上述幾種不同的方法對(duì)虎門大橋進(jìn)行了靜風(fēng)穩(wěn)定性分析。分析中采用的的結(jié)構(gòu)幾何和材料參數(shù)、各攻角下的靜力三分力系數(shù)均取自同濟(jì)大學(xué)土木工程防災(zāi)國家重點(diǎn)實(shí)驗(yàn)室--風(fēng)洞實(shí)驗(yàn)室的資料和試驗(yàn)報(bào)告[7]。計(jì)算出的臨界風(fēng)速列于表
2。圖 2為采用不同方法計(jì)算出的結(jié)構(gòu)主梁跨中斷面橫向位移隨風(fēng)速的變化(因側(cè)傾失穩(wěn)和扭轉(zhuǎn)發(fā)散兩種方法無法跟蹤結(jié)構(gòu)失穩(wěn)的全過程,故未列出)。為了更好地說明本文所提的增量一內(nèi)外兩重迭的代法的穩(wěn)定性,分三種不同的初始風(fēng)速加載方式考察了結(jié)構(gòu)靜風(fēng)響應(yīng),其中方式一為風(fēng)速從40m/s開始,每次增加
10m/s,直至110m/s;方式二為風(fēng)速從70m/s開始,每次增加20m/s,直至 110m/s;方式三為一次性加至110m/s,計(jì)算結(jié)果如表3所示。
五、結(jié)論
通過對(duì)表1中所列的幾種主要大跨徑橋梁靜風(fēng)穩(wěn)定性分析方法的回顧與比較,可以得出以下三點(diǎn)結(jié)論:
(1)采用線性方法來計(jì)算大跨徑橋梁的靜風(fēng)穩(wěn)定性,一般會(huì)過高地估計(jì)結(jié)構(gòu)的抗靜風(fēng)能力,偏于不安全,這與它們未考慮結(jié)構(gòu)幾何非線性和靜風(fēng)荷載非線性有關(guān)。而采用三角級(jí)數(shù)法、增量迭代法和本文提出的改進(jìn)方法--增量一兩重選代法,均能比較真實(shí)地反映結(jié)構(gòu)的實(shí)際抗靜風(fēng)能力。
(2)線性方法是通過預(yù)先假定結(jié)構(gòu)的失穩(wěn)模式來求解結(jié)構(gòu)靜風(fēng)失穩(wěn)風(fēng)速,這將導(dǎo)致其無法跟蹤結(jié)構(gòu)失穩(wěn)的全過程,而其余三種方法則不同,它們均是通過風(fēng)速的逐級(jí)加載來獲得結(jié)構(gòu)靜風(fēng);臨界風(fēng)速,因此,它們完全能跟蹤結(jié)構(gòu)失穩(wěn)的全過程。
(3)增量迭代法是采用增量法進(jìn)行結(jié)構(gòu)幾何非線性的求解,因此,勢(shì)必會(huì)造成計(jì)算誤差的積累,此外,如果要獲得結(jié)構(gòu)的靜風(fēng)臨界風(fēng)速,將只能進(jìn)行風(fēng)速的逐級(jí)加載,這勢(shì)必又會(huì)造成計(jì)算速度慢的缺點(diǎn)。而本文提出的改進(jìn)法--增量一兩重迭代法無須進(jìn)行風(fēng)速的逐級(jí)加載就能獲得結(jié)構(gòu)靜風(fēng)臨界風(fēng)速,且有比較高的精度,這一點(diǎn)在算例中得到了充分的驗(yàn)證。
參考文獻(xiàn)
[ l]V.Boonyapinyo,H.Yamada,T.Miyata,Wind-induced nonlinearl
lateral-torsional buckling of cable-stayed bridges,
Jouynal of Structural Engineering,ASCE,120(2);486-506,1994
[2]項(xiàng)海帆,林志興.橋梁抗風(fēng)設(shè)計(jì)規(guī)范》的研究課題.結(jié)構(gòu)工程師(增刊),1998
[3]Nagai,M.,Xie X.,and etc, static and dynamic instablility
analysis of 1400-Meter long-span cable- stayed bridges,IABSE"Long-Span
and High-rise Structures",1998
[4]《公路橋梁抗風(fēng)設(shè)計(jì)指南)編寫組.公路橋梁抗風(fēng)設(shè)計(jì)指南.北京:人民交通出版社,1996
[5]程進(jìn),肖汝誠,項(xiàng)海帆.大跨徑懸索橋靜風(fēng)扭轉(zhuǎn)發(fā)散的級(jí)數(shù)解法.同濟(jì)大學(xué)學(xué)報(bào),1992(2):127-130